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ABSTRACT

The tumor suppressor p53 is a sequence-specific
transcription factor, which regulates the expression
of target genes involved in different stress responses.
To understand p53’s essential transcriptional func-
tions, unbiased analysis of its DNA-binding repertoire
is pivotal. In a genome-wide tiling ChIP-on-chip
approach, we have identified and characterized
1546 binding sites of p53 upon Actinomycin D
treatment. Among those binding sites were known
as well as novel p53 target sites, which included
regulatory regions of potentially novel transcripts.
Using this collection of genome-wide binding sites, a
new high-confidence algorithm was developed,
p53scan, to identify the p53 consensus-binding
motif. Strikingly, this motif was present in the majority
of all bound sequences with 83% of all binding sites
containing the motif. In the surrounding sequences of
the binding sites, several motifs for potential regula-
tory cobinders were identified. Finally, we show that
the majority of the genome-wide p53 target sites can
also be bound by overexpressed p63 and p73 in vivo,
suggesting that they can possibly play an important
role at p53 binding sites. This emphasizes the
possible interplay of p53 and its family members in
the context of target gene binding. Our study greatly
expands the known, experimentally validated p53
binding site repertoire and serves as a valuable
knowledgebase for future research.

INTRODUCTION

The tumor suppressor gene p53 is the most frequently
mutated gene in human cancers (1). It can be activated by

a large number of stress signals. The p53 protein is able to
function as a sequence-specific transcription factor (2) and
it regulates the expression of target genes involved in
growth arrest, apoptosis, DNA repair, senescence, differ-
entiation and other responses (3). Substantial evidence
indicates that the transcriptional functions of p53 are
necessary for p53-mediated tumor suppression (4),
although it has also been reported that p53 can induce
apoptosis without a functional transactivation domain (5).
The tumor suppressor p53 in a sequence-dependent

manner to a so-called p53 consensus-binding motif. This
motif is found in many identified binding sites of, mostly
upregulated, p53 target genes and consists of two copies of
the palindromic consensus half-site RRRCWWGYYY
separated by a spacer of 0–13 bp, in which R¼purine,
W¼Aor T andY¼ pyrimidine (6). The p53 binding ability
and its transcriptional activity might be influenced by the
sequence of the two half-sites as well as their mutual
orientation (7,8). Up to now it was thought that this p53
response element is mostly found within a few thousand
base pairs of the transcriptional start site (TSS) (4). In
addition, binding sites which differ from the classical p53
binding motif have been reported (9,10). It has been
suggested that the deviations from the consensus sequence
hint at the possibility that DNA topology also determines
p53 binding (11) and that even the DNA structure might
totally replace the consensus sequence (12). However, these
findings are largely based on single target genes; a genome-
wide analysis of binding sequences for common motifs will
be very informative.
The transcriptional activity of p53 can be regulated by

posttranslational modifications (13,14) as well as trans-
criptional cofactors and p53-binding proteins (4,15). p300
acts as an p53-dependent coactivator for p53 target genes
by acetylating p53 (16,17) and it binds to various core-
cruited factors that enhance the p53 response (18). Two
of those have recently been identified, JMY and Strap,
and both factors are required for p53 activity (19,20).
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Recent studies have also provided evidence that the
selection of p53 target genes can be modulated by p53
interacting proteins. The ASPP (apoptosis-stimulating
protein of p53) proteins have been shown to interact
with p53 and to specifically modulate p53-induced apop-
tosis but not cell cycle arrest (21). Interestingly, the hCAS
(human cellular apoptosis susceptibility) protein has been
reported to be part of a distinct macromolecular complex
of p53 at specific subsets of p53 target genes, e.g. Pig3 and
p53AIP1 and its knockdown attenuates the p53-dependent
apoptosis (22). Other transcription factors that might be
involved in the target gene selection of p53 are the Brn3
family of POU domain transcription factors (23), the YB1
protein (24), NF-kB and IKKa (25,26) as well as the
hematopoietic zinc-finger cofactor (HZF) protein (27). In
addition to transcriptional factors that influence the p53-
target gene binding, there is also evidence that the p53
family members p63 and p73 can contribute to the
p53-recruitment at specific target genes. Both p63 and
p73 were reported to be required for the p53 binding to the
p53 response elements of the target genes Perp, Bax and
Noxa, but not to those of p21 or Mdm2 (28). A ‘priming
model’ was suggested, in which p63 and p73 can bind to a
specific chromatin-embedded response element not acces-
sible for p53, and subsequently modify the context of the
response element in such away that it becomes available for
p53 binding (29). So far, a systematic analysis of the
capability of p63 and p73 to play a role in vivo at p53-target
sites has not been performed.
Many p53 target genes are currently known, e.g.

identified with microarray expression profiling (30,31),
and at the moment it is intensively studied how p53
determines which target genes to activate or repress in a
certain stress response (4,32). In addition to the experi-
mentally identified p53 target genes, there are also
computationally predicted binding sites (33,34). These
predictions do not necessarily reflect the actual target
sites bound in vivo by p53. For the selection of functional
binding sites, the involvement of other cellular factors,
chromatin accessibility, DNA sequences surrounding the
potential binding site and DNA topology have to be taken
into consideration, in addition to the consensus-binding
sequence itself. These factors can not yet be accurately
modeled. It is estimated that there are between 300 and
3000 binding sites for p53 in the human genome, based on
studies from Hoh et al. (34), ChIP-on-chip (chromatin
immunoprecipitated DNA hybridized on DNA arrays)
data extrapolated from chromosome 21–22 (35) and ChIP-
on-chip data derived from ENCODE regions (36). Since
there are only about 180 experimentally confirmed target
genes (30), and 542 high-probability binding sites (37), it is
expected that there are still many unidentified binding sites
and target genes, notwithstanding several studies that have
reported binding sites for p53 (35–42). Furthermore, it
remains to be seen how a comprehensive set of p53-DNA
binding sites in vivo can be used to givemore insight into the
different transcriptional functions of p53.
Here, we report a genome-wide ChIP-on-chip study of

p53 employing high-resolution tiling arrays with an
average probe spacing of 100 bp. We have identified 1546
high-confidence sites and performed extensive analysis of

the in vivo binding sites with respect to their sequence as
well as surroundings and nearby genes. We report the
development of a new publicly available algorithm,
p53scan, to identify the p53 consensus binding motif with
high specificity. The motif is present in 83% of all the p53-
bound sequences and in almost all highly enriched binding
sites. Potential novel functions of p53 derived from the
global binding sites were investigated and validated. To
obtain a more complete picture of the in vivo bound target
genes of p53, we have also performed ChIP-on-chip ana-
lyses with two of its familymembers, p63 and p73.We show
that a large fraction of these newly identified binding sites
for p53 could also be bound by p63 and p73 in vivo.

MATERIALS AND METHODS

Cell culture and drug treatment

The human osteosarcoma cell lines U2OS expressing
endogenous wild-type p53, and Saos-2, which are p53
null (43), were maintained in Dulbecco’s modified Eagle
medium supplemented with 10% fetal calf serum at 378C.
The Tet-on inducible expression system (BD Biosciences,
Breda, The Netherlands) was used in Saos-2 cells to
generate cell lines that conditionally express FLp53,
TAp63a or TAp73a. cDNA of the gene of interest was
cloned into the pTRE vector and cotransfected with the
pZoneXN, which has a puromycin selection marker, into
Saos-2 cells. Transfections were performed by the calcium
phosphate precipitation method. Stable clones were
selected with 1mg/ml puromycin (Sigma, Zwijndrecht,
The Netherlands). To induce the expression of FLp53,
TAp63a or TAp73a, 2 mg/ml doxycyclin (Sigma), a
Tetracyclin homologue, was added to the medium. The
inducible Saos-2 cell lines were first induced with doxycy-
clin for 24 h and then treated with 5 nM Actinomycin D
(Sigma) for another 24 h. The U2OS cells were treated with
5 nM Actinomycin D for 24 h.

Cell cycle analysis

Cells were induced and treated as described above. The
cells were fixed with 96% ethanol and stained with pro-
pidium iodide (Sigma). DNA content was analyzed by
flow cytometry (Becton Dickinson FACScan) and ana-
lyzed using CellQuest Pro software.

Immunoblotting

To assess protein levels, proteins from whole-cell extracts
were harvested, lyzed and separated by SDS–PAGE and
analyzed by western blotting with a-p53 (DO1, BD
PharMingen, Breda, The Netherlands).

Transactivation assays

The selected binding sites were amplified from genomic
U2OS DNA and cloned behind the luciferase gene into the
pGL3-promoter vector (Invitrogen, Breda, The
Netherlands), which contains a luciferase reporter gene
behind a SV40 promoter. U2OS cells were transiently
transfected with pGL3 constructs and a pRL-TK reporter
(Promega, Leiden, The Netherlands), constitutively
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expressing Renilla as a normalization control, by calcium
phosphate transfection. Cells were lyzed and luciferase
activity was measured using the Dual-Luciferase Reporter
Assay System (Promega).

RNA isolation and RT–PCR

Total RNA was extracted using the RNeasy Mini kit
according to protocol (Qiagen, Venlo, The Netherlands).
For cDNA synthesis, reverse transcription was performed
with 1 mg of the total RNA, oligodT anchor primers,
dNTPS, DTT, buffer and Superscript Retrotranscriptase
(Invitrogen). cDNA was analyzed by qPCR using a MyIQ
machine (Biorad, Veenendaal, The Netherlands). Primers
used for real-time PCR are available upon request.

ChIP and ChIP-on-chip

Chromatin immunoprecipitation (ChIP) was essentially
performed as described by Denissov et al. (44). The cells
were sonicated using a Bioruptor sonicator (Diagenode,
Liege, Belgium) for 15min at high power, 30 s ON, 30 s
OFF. Antibody incubation with chromatin from U2OS
cells treated with Actinomycin D was performed overnight
at 48C with 2 mg of DO1 antibody (BD PharMingen). For
ChIP experiments in Saos-2 inducible cell lines DO1 (BD
PharMingen), 4A4 (Abcam, Cambridge, UK) and BL906
(Abcam) were used for p53, p63 and p73, respectively.
Real-time PCR was performed using the SYBR Green mix
(Biorad) with the MyIQ machine (Biorad). Primers used
for real-time PCR are available upon request. To produce
more material for a ChIP-on-chip, the total DNA and
ChIP DNA needed to be amplified. For genome-wide
hybridization, the material was amplified using LM-PCR
amplification (45). The T7-based amplification procedure
(46) was used for the hybridizations on the dedicated
arrays. The total DNA and ChIP DNA were hybridized to
whole genome tiling arrays (HG17Tiling Set) or custom
designed microarrays manufactured by NimbleGen
Systems, Inc., Madison, WI, USA. Raw data for all
microarray hybridizations are available at ArrayExpress
(http://www.ebi.ac.uk/arrayexpress) under accession
E-TABM-442.

Custommicroarray design

Peak detection (see below) was performed on the genome-
wide dataset and all probes within the positive regions
recognized by the peak detection procedure, extended
equally up- and down-stream to a total of 2 kb, were
spotted on a custom design array (NimbleGen Systems),
hereafter referred to as dedicated design. All the probes
from a continuous region of chromosome 21 (from 28 692
406 to 41 270 931) on the hg17 array were included in the
dedicated design to provide a baseline for normalization
purposes. This region is hereafter referred to as tilepath.

Data normalization

The probe sequences from both the whole genome and the
dedicated design were compared to the human genomic
sequence with BLAT (47). Probes with 10 or more
matches were discarded for use in the subsequent analysis.

The raw probe ratios were normalized within arrays using
Tukey’s biweight. For all hybridizations performed on the
dedicated array, the ratios were normalized against the
tilepath region.

Peak detection

The microarray data were analyzed using three different
peak detection programs to identify putative targets with a
high degree of confidence. Default parameters were used
except where noted. The proprietary program provided by
NimbleGen was run with a 1% false positive rate. For
Tilemap (48), hybridization length was set to 50 and
maximal gap size to 100. All probes with posterior
probability of at least 0.9 were defined as peaks. For
Mpeak (49), the maximum gap was set to 300, and a
minimum log2 ChIP/Total ratio of at least 2.5 SD was used
as a threshold. All positive regions or peaks<1 kb in length
were extended equally up- and down-stream to cover 1 kb.
Per biological replicate all regions determined to be positive
by one of the programs were combined. Finally, a peak was
defined as a binding target if positive regions shared any
overlap in each biological replicate.

Mapping binding sites to genes

Target locations were mapped to NCBI 36 coordinates
using the Batch Coordinate Conversion (liftOver) utility
provided by the UCSC Genome Bioinformatics group.
Gene locations of all genes were downloaded from Ense-
mbl [release 43, February 2007 (50)]. To map a target to a
gene, the distance from the middle of the target to the
Ensembl gene start was used.

Annotation of genes

For annotation of genes, only target genes with a binding
site within 5 kb of the gene were used. Overrepresented
Gene Ontology (GO) (51) categories within annotation of
the target genes were determined with Ontologizer using
the parent–child method, which takes into account the
parent–child relationships of the GO hierarchy (52). The
P-values were adjusted using Westfall–Young single-step
multiple testing correction and a corrected P-value
threshold of 0.05 was used as a cut-off for reporting
significant matches. Genes were annotated with KEGG
pathways (53) using Fatigo+ (54). Overrepresented
pathways were determined according to the hypergeo-
metric distribution with a P-value threshold of 0.05.

The p53scan algorithm and motif analysis

Sequences of equal length were selected for all targets by
determining the probe with the highest mean ratio value
within each peak and selecting a 500 bp region centered on
this probe. All probes within regions on the slide of at
least 10 consecutive probes, or 1 kb, with a maximum
mean log2 ChIP/Total ratio of 0.5 were selected as
background sequences. These sequences were divided in
500 bp regions to create sequences of the same length as
the target sequences.
To determine the optimal positional weight matrix

(PWM) for p53scan, the de novo motif discovery program
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MDmodule (55) was applied to half of the 500 bp target
sequences, 773 in total. Sequences were ordered based
on the ChIP/Total ratio of the highest probe in the
peak. MDmodule was run with a width of 20 and the
number of top sequences to look for motifs was set to 200.
Default parameters were used for all other options. The
MDmodule output was subsequently converted to a PWM.
In p53scan, the score of a subsequence � of length L is

calculated as follows:

XL
i¼1

ln
fi, b
g

þ z

� �

where fi,b is the fraction of each nucleotide at position i, g
is 0.25 and z is 0.01.
To incorporate a variable spacer length, the two half-

sites are scanned separately and the scores for each half-
site are combined. Cutoffs for spacer lengths greater
than 0 were determined by scanning 10 times as many
random nonbound sequences and choosing the threshold
that result in no hits. This enables p53scan to take high-
scoring motifs with spacer lengths other than 0 into
account without drastically changing the false positive
rate (FPR).
To test the performance of the algorithm and to com-

pare it to other available algorithms, the 773 sequences
not used for training were compared to a background set
of five times as many random nonbound sequences. Three
different metrics were used for comparison:

(1) The area under the receiver operator curve (ROC
AUC), which reflects the balance between the false
positive rate and the true positive rate.

(2) The mean normalized conditional probability
(MNCP) as described by Clarke and Granek (56).

(3) The maximum F-measure or weighted harmonic
mean of precision and recall.

Recall ¼
True Positives

True Positivesþ FalseNegatives

Precision ¼
True Positives

True Positivesþ False Positives

F�measure ¼
2 � Precision �Recall

PrecisionþRecall

The process of randomly selecting training, test and
background sequences and subsequent performance com-
parison was repeated in 10 independent runs. In all cases
the performance was comparable. The best scoring PWM
was kept and implemented. All 1546 targets were com-
pared to five times as many randomly selected noncoding
sequences of equal length to produce Figure 4B.
Subsequently, p53scan was used to analyze the complete
set of target sequences with a score cutoff of 4.393 for
spacer length 0 resulting in the highest F-measure,
corresponding to an estimated FPR of �7%.
For de novomotif prediction of possible cofactor motifs,

themotif discovery programMDmodule was applied to the
500 bp target sequences. The same procedure as described

for the p53scan PWM was followed. The number of top
sequences to look for motifs was set to 100, all widths from
6 to 16 were considered, and the number of motifs to report
was set to 10. To calculate the significance of the discovered
motifs, the number of sequences with at least one motif
instance with 0.8�maximum possible score was deter-
mined in both the sample and the background sequences
using TAMO (Tools for Analysis of Motifs) (57). For each
motif a P-value was calculated using the hypergeometric
distribution. The corresponding significance value was
calculated as Significance ðSÞ ¼ � log 10ðP�valueÞ.

As selection criteria, we used a significance cut-off of 1.3
corresponding to a P-value of 0.05 with a minimum of
occurrence of at least 10 times. All significantly enriched
motifs were clustered using a k-medoids clustering algo-
rithm as described in (58). Clustered and aligned motifs
were averaged to produce consensus motifs. The signifi-
cance of the resulting motifs was determined as described
in the previous paragraph.

To analyze target sequences for known motifs, the
sequences were scanned with all the position weight
matrices from the TRANSFAC database (public release
version 6.0) (59) and further analyzed as described in the
previous de novo motif prediction section. Similar motifs
were grouped and averaged.

RESULTS

Genome-wide identification of p53-binding sites
using ChIP-on-chip

In order to detect in vivo binding sites for p53 on a genome-
wide scale, we applied the ChIP-on-chip approach to
endogenous p53 expressing U2OS osteosarcoma cells. In
unstressed cells, endogenous p53 is maintained at low
levels. To activate p53, cells were treated with 5 nM Acti-
nomycin D for 24 h (60). Upon Actinomycin D treatment,
p53 is stabilized and growth arrest is induced (Figure 1A
and B). ChIP was performed upon this treatment. To assess
the specificity of our ChIP-results, p53 binding to exon 2 of
the myoglobin gene was determined as background signal
and enrichment was calculated as fold binding over
background signal (Figure 1C). For the p21-promoter, an
enrichment of p53 binding of almost 600-fold was attained
showing that the immunoprecipitation was highly specific.
For the global binding site analysis, the enriched (ChIP)
sample and the nonenriched (Total) DNA sample were
amplified, differentially labeled and cohybridized to 38
DNA arrays covering the whole human genome (repeat
masked) with a probe spacing of 100 bp and a probe length
of 50 bp (NimbleGen Systems, Inc.).

We called putative p53-binding sites combining three
different peak extraction algorithms to maximize the
number of potential peaks. The genomic loci of the
combined peaks were combined to generate a so-called
dedicated array (61), which was used to hybridize two
further biological replicate experiments (Figure 1D). If a
peak was identified in all three biological replicates, it was
considered as a high-confidence p53-binding site. This
way, we identified in total 1546 high-confidence binding
sites for p53. Verification of the identified binding sites
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was performed by quantitative PCR with three indepen-
dent ChIP experiments. In total, 50 potential binding sites
were randomly selected and tested. This resulted in a
confirmation of 48 out of 50 sites. We conclude that we
identified 1546 genome-wide p53-binding sites with a false
positive rate of �4%.

Since several studies, using different ChIP-based tech-
niques, have identified binding sites for p53 in various
cell systems (35–38,62), we compared these to the
collection of our binding sites (Table 1). The overlap
between our data set and the PET5 cluster in the

ChIP-PET data set for p53 by Wei et al. (37) was 69%,
even though different cell lines and treatments were used
(Figure 1E). The extensive overlap with the highest ranked
targets of the ChIP-PET data (69%) and lower overlap
(17%) in the low ranked targets with ChIP-PET data is in
concordance with the study of Euskirchen et al. (63),
where they compared ChIP-sequencing with ChIP-on-chip
under the same conditions for STAT1 and also found the
most overlap in the highest ranked regions. From the
genes that were identified by a ChIP-based screen in yeast
(41), 50% are found in our study. Thus, even when using
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Figure 1. Genome-wide identification of p53-binding sites using ChIP-on-chip. (A) Representative cell cycle profile of U2OS cells untreated or treated
for 24 h with 5 nM Actinomycin D. (B) Western blot showing p53 expression levels of U2OS cells, untreated or treated for 24 h with 5 nM
Actinomycin D. (C) ChIP enrichment (fold over negative control, myoglobin) of p53 at the p21 promoter and the intronic binding site of GADD45A.
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different cellular systems and physiological conditions as
well as various ChIP-based techniques, half or more of the
p53-binding sites appear to be overlapping with our global
ChIP-on-chip approach, showing we created a high-
confidence p53-binding dataset.

Characterization of identified p53-binding sites

To annotate the identified p53 binding sites, their locations
were analyzed with respect to annotated Ensembl genes.
We found that 21% of all p53-binding sites mapped to TSS
flanking regions (5 kb upstream, first exon and intron),
28% were within a gene (excluding first exon and intron),
3%within 5 kb downstream, 16%within 5–25 kb upstream
or downstream and 32% in intergenic regions (Figure 2A).
We compared the frequency of p53 binding in specific
genomic regions to the distribution of these genomic
regions over the whole genome (using Ensembl gene
annotations) and found that p53-binding sites are sig-
nificantly enriched in TSS flanking regions and within
5–25 kb upstream or downstream of a gene (P¼ 1.49E-009
and 0.0094, respectively) (Figure 2A).
To study if binding of p53 in TSS flanking regions can

regulate the transcription of the corresponding gene
products, we randomly selected 11 genes in this group to
test their changes of expression upon p53 activation
(Figure 2B). Four of these genes were indeed more than
2-fold upregulated, two were >2-fold downregulated, and
five did not change >2-fold. Thus, upon p53 binding in
TSS flanking regions, genes can get activated or repressed
by p53, which is in accordance with the described function
of p53 as transcriptional activator and repressor.
While the biological function of p53 binding to

promoter regions is well established, we wanted to study
the functional potential of intronic as well as intergenic
p53 binding. We first tested nine of the intronic and
intergenic binding sites (randomly chosen) in transactiva-
tion assays cloning them into a pGL3-promoter-luciferase
vector, which can be used to test enhancer functions.
U2OS cells were transiently transfected with these

luciferase constructs and treated with Actinomycin D to
activate p53. For each of the selected binding sites, the
luciferase activity increased two to nine times compared to
the pGL3prom control vector (Figure 2C). This indicates
that p53-binding sites in introns and intergenic regions can
play a role as transcriptional enhancers.

To test whether the p53 binding in intergenic regions
could also regulate the transcription of novel gene
products, we mapped the intergenic binding sites to
human expressed sequence tags (ESTs). This revealed
that 67% of intergenic p53-binding sites are located within
5 kb up- or down-stream of an EST. This is a significant
enrichment (P¼ 1.50E-4) compared to the proportion of
the complete genome that falls within this category. From
these binding sites close to an EST, we chose four sites for
further analysis (Figure 2D, upper panel). We validated
binding of p53 to these sites in targeted ChIP experiments
(Figure 2D, lower left panel) and tested changes of
expression of these novel transcripts upon p53 activation.
The four chosen transcripts showed a 2- to 15-fold
induction (Figure 2D, lower right panel) upon p53
activation. This indicates that many novel, currently
unannotated transcripts may be regulated by p53.

Functional annotation of the p53-binding sites

Since we found well-known p53 target genes involved in
pathways such as DNA repair (GADD45A, DDB2), cell
cycle regulation (MDM2, p21) and apoptosis (BAX, DR5)
(Table S1), we wanted to analyze the possible biological
roles of all the p53-binding sites in our dataset. When we
grouped our p53 targets, which have a binding site within
5 kb, according to function in GO using Ontologizer
(52,64), we found several new groups of target genes that
have not been linked to p53 function before or that expand
p53’s functions such as the phosphorus and biopolymer
metabolism group (Figure 3A).Metabolic changes occur in
many cancers and recently p53 has been linked to changes
in metabolism (65). The fact that we find metabolism-
related genes significantly enriched in our binding site list
could well indicate that p53 plays an even wider role in
metabolic changes besides the so far described function of
p53 in glucose metabolism and oxidative stress (66).

To study the involvement of our identified p53-target
genes in entire biological pathways, we classified them
according to the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) using FatiGO+ (54). Axon guidance
and calcium-signaling pathways (Figure 3B) are signifi-
cantly overrepresented in our dataset, suggesting a hitherto
undescribed role for p53 in these biological processes. To
study the axon guidance target gene group further, we
randomly chose three genes from this group for our
analysis: SEMA3C, SEMA6A and SEMA3A (Figure 3C,
upper panel). We validated the ChIP-on-chip data
(Figure 3C, upper panel) by targeted ChIP and found a
significant enrichment of p53 binding upon Actinomycin D
treatment of U2OS cells to all tested sites (Figure 3C, lower
panel). Thus, it remains to be elucidated which role the
target genes from the axon guidance group could play
during the p53-mediated stress response.

Table 1. Overlap with published data sets

Published study Total number
of binding sites

Overlap with p53
of this study
(1546 total)

Yang et al. (62) 5807 383
Wei et al. (37) PET2+ 1773 301

PET2+
with
p53PET
motif

542 262

PET3+ 327 170
PET4+ 169 111
PET5+ 106 73

Krieg et al. (38) Low 113 3
Mid 34 1
High 8 1

Cawley et al. (35) 48 15
Kaneshiro et al. (36) 37 16
Hearnes et al. (41) 38 26
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Development of p53scan, a novel p53-motif
finding algorithm

The p53 DNA binding site has been characterized and is
consistently described as two copies of the half-site RRR
CWWGYYY separated by a spacer of 0–13 bp,
where R¼ purine, W¼A or T and Y¼ pyrimidine.
Although this may be the most optimal sequence for p53
binding, only 52 out of the 1546 binding targets in this

study contain a perfect match to this sequence. Thus, the
p53 motif shows a high degree of degeneracy, which could
create the versatility of different p53-mediated stress
responses in vivo. Different approaches for identifying
the degenerate p53-consensus binding motif have been
described. Most are based on a PWM scoring method
although recently an algorithm based on experimentally
measured binding affinity was shown to give interesting
results (33).
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An accurate PWM which correctly reflects the binding
preference of a transcription factor is a crucial parameter
for identifying binding sites with PWM algorithms. The
different PWMs that have been described for p53 until now
were constructed based on only 17 (TRANSFAC) to 39
(37) binding sequences. Consequently, these PWMs only
reflect the information present in those few sequences.
Therefore, not surprisingly, using p53MH (which uses a
PWM based on 37 sequences) with a cutoff of 90 as
suggested by the authors (34), we find that only 33% of our
high-confidence binding sequences contain a motif. Having
identified a set of genome-wide binding sites, we wondered
if we could use the information encompassed in a wide
variety of p53-binding sites to develop a more sensitive
algorithm. We randomly selected 773 sequences (one half
of our identified binding targets) and ordered these based

on the ChIP/Total ratio of the highest probe in the peak.
We used the de novomotif prediction programMDmodule
(55) on the ordered sequences to predict the p53 motif
(Figure 4A). The PWM was constructed from these results
(matrix shown in Table S2) and combined with a
scoring scheme adapted from the p53MH model. This
approach enabled us to greatly increase the amount of
binding sequences with an identified p53 motif up to 83%
(FPR �7%).
The performance of our algorithm, p53scan, was

benchmarked on the binding sites identified in this study
(the ones not used for training) and the human p53-
binding sites identified previously by ChIP in combination
with paired end tag sequencing [ChIP-PET 3+ (37)]. We
compared the performance to p53MH and to the Match
algorithm (67) with the p53 PWM from TRANSFAC,
using three different metrics: ROC AUC, MNCP (56) and
the harmonic mean of precision and recall (F-measure).
The training and benchmarking process was repeated in
ten independent runs and the average results are shown
in Table 2. We implemented the best performing PWM in
p53scan, and compared the performance on all binding
targets to p53MH and Match (Figure 4B). We also
compared p53scan to the ChIP-PET algorithm described
by Wei et al. (37) using the ChIP-PET 3+ sequences. The
authors identified 72% of these sequences as having a
motif using p53PET with an estimated FPR of 0.68%.
Using p53scan on their sequence set with the same
estimated FPR, we find a p53-binding motif in 82% of
the binding sites. These results clearly show that p53scan
can identify more p53 motifs in the evaluated sequence
sets than the currently described algorithms, without
lowering specificity.
The possibility of a spacer within the p53 motif deserves

special consideration. If all spacer lengths from 1 to 13 are
considered without specifying additional constraints the
false positive rate of a PWM algorithm like p53scan greatly
increases, due to the greater number of possible motifs
that is evaluated. As can be seen in Figure 4C most of our
p53-binding motifs actually do not have a spacer between
the two half sites. Therefore by default p53scan employs a
strict score threshold for all spacer lengths other than 0.
The score threshold for each individual spacer length was
selected by scanning a background sequence set (random
nonbound sequences of equal length) for each spacer length
and selecting the cutoff that resulted in no hits. Thus, we
have developed a highly specific and inclusive algorithm to
identify p53-binding motifs, which is freely available at:
http://www.ncmls.nl/bioinfo/p53scan.
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Figure 4. Development of p53scan, a p53-motif finding algorithm.
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The FPR used to characterize the p53-binding sites (�7%) is marked.
(C) Distribution of spacer length in the p53 consensus sites based on
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Table 2. The performance of p53scan

p53 ChIP-on-chip p53 ChIP-PET 3+

MNCP AUC F-measure MNCP AUC F-measure

p53scan 8.67 0.90 0.86 3.97 0.93 0.91
p53MH 5.62 0.83 0.76 3.37 0.86 0.81
Match 7.35 0.82 0.82 3.49 0.87 0.81
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Characterization of the p53-binding motif

The p53scan cutoff resulting in the highest F-measure
(FPR �7%, as marked in Figure 4B) represents a balance
between retrieving false positives and missing false nega-
tives. We have used this setting to analyze and further
characterize the bound target sites identified in this
study. We found the p53 motif in 1281 out of 1546

(83%) binding sites. We determined the location of the
consensus motif with respect to the ChIP-on-chip data
and found it to be located mainly in the centre of the peaks
(Figure 5A). To study whether there is a correlation
between the ChIP/Total binding ratio of p53 and the
occurrence of the p53-binding motif, we ranked the
identified p53-binding sites according to their relative
binding enrichment (log2 ChIP/Total) and divided them
into three subgroups of low, medium and high ratios. The
percentage of binding sites, which contain the p53-binding
motif increased slightly with the binding ratio of the
peaks. In the high-enrichment subgroup (468 sites with a
log2 ChIP/Total ratio of at least 3.17), almost 90% of the
p53-binding sites contain a p53-binding motif (Figure 5B).

Next, we analyzed the binding enrichment as measured
by ChIP/Total signal ratio in relation to the exact com-
position of the consensus site. We averaged the binding
ratio as a function of the number of mismatches to the
consensus motif (Figure 5C). This shows that there is a
correlation between enrichment in vivo as measured by
ChIP-on-chip and the nucleotide composition of the p53-
binding motif.

Since 52 (�11%) of the sequences in the high subgroup,
consisting of the most highly enriched targets (Figure 5B),
do not contain a p53-binding motif as identified by
p53scan, we tried to further characterize the motifs in
these sequences. When we expand the peak area to 1.5 kb,
p53scan can find a binding motif in 43 out of the 52
sequences, using settings that result in only 15 motifs
found in 1500 random coding sequences of equal length
(FPR �1%). In these cases, the actual calling of the peak
area could have been imprecise, most likely due to the
binding site being located in repeat-masked areas.
Remarkably, when we take these matches into account,
in total 98% of the sequences in the high subgroup contain
a p53 motif.

Transcription factor binding motifs in the vicinity
of the identified p53-binding sites

Corecruited DNA-binding factors (18) have been invoked
to play a role in the flexible response of p53 to various
stress signals. We therefore analyzed the vicinity of the p53
sites (500 bp centered on the peak of the p53 binding) for
the potential presence of other known transcription factor
binding sites, using TAMO (57) with the TRANSFAC
database (59). Predicted binding sites of eight different
motifs of transcription factors were found to be signifi-
cantly overrepresented in the surrounding sequences of the
p53-binding sites (Figure 6). Among those were potential
binding sites for Krüppel-like factors (KLF), Sp1/Sp3, the
group of basic helix–loop–helix (bHLH) proteins, AP1,
AP2, MZF1, CP2 and ETS2. Many of these factors that
we have found to be statistically enriched in our genome-
wide collection of p53-binding sites have been experimen-
tally shown to influence p53-dependent transcriptional
activity for single target genes. The most overrepresented
motif in our dataset are the motifs for KLF; it has been
suggested that KLF 4 is a mediator of p53 in controlling
progression of the cell cycle following DNA damage (68).
Interestingly, p53 has been reported to require
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cooperation of Sp1 or a Sp1-like factor for the transcrip-
tional activation of the human BAX promoter (69) as well
as for p21 (70). To find out if the potentially cobinding
transcription factors might influence p53-transcriptional
activity towards a specific direction of the response
pathway, we looked at the different subsets of the p53-
binding sites containing a specific motif. We analyzed the
potential biological significance of the genes, which are
within 5 kb of these binding sites using GO annotations, as
described above. Three significantly enriched GO cate-
gories were found for the cobinding factors: develop-
mental, metabolic and cell–cell signaling pathways
(Table 3). In all three pathways p53 has been reported
to play a role. Our data thus supports the notion that the
response pathways of p53 might be influenced by the
identified potential cobinding transcription factors.

p63 and p73 binding to p53 targets

The p53 family members p63 and p73 have been reported
to contribute to the p53 stress response in certain tissues

in vivo (28,71). They might play a role in the regulation of
transcriptional activities of p53 as well as potential
cobinding transcription factors as evidenced by their
influence on p53’s ability to bind to various apoptotic
promoters in vivo (28,71). Furthermore, Yang et al. (62)
studied the genome wide binding of p63 and identified a
p63-specific motif. Since this motif strongly resembles the
motif to which p53 binds, we were interested if and to
what extend p63, and the other p53 family member p73,
can bind to our identified p53 global binding sites. Because
of possible cell-type specific differences in the transcrip-
tional response pathways of the p53-family, a cellular
system was needed that would allow a direct comparison
between p53, p73 and p63. We generated Saos-2 cell lines
expressing TAp63a, TAp73a or p53 under a tetracycline-
inducible promoter. We performed ChIP-on-chip analysis
for p63 and p73 as well as overexpressed p53 on the
dedicated array. Comparing the binding sites identified for
endogenous p53 in U2OS cells to those identified for
exogenous p53 in the Saos-2 p53 cell line, we found that
1112 of the endogenous binding sites (72%) are bound by
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exogenous p53 as well. Very interestingly, if we compare
these 1112 p53 exogenous-binding sites, which overlap with
the binding sites occupied by wt endogenous p53, 72% of
those p53-binding sites could also be bound by p73 and/or
p63 in vivo (Figure 7). With the majority of the p53-binding
sites also being bound by p73 and p63, there seems to be
good evidence that p63 and p73 could play an important
role in the p53 transcriptional response pathways.
To investigate whether binding sites that can be bound

only by p53 or also by p73 and p63 show sequence
differences, we compared the p53motif based on p53scan in
shared binding sites (Figure 7B, upper panel) and binding
sites which are not bound by p63 and p73 (Figure 7B lower
panel). These motifs very much resemble each other,
independently of whether they are bound by p53 only or
by all three family members. Accordingly, p63 and p73 are
actually able to bind sequences containing this p53-binding
motif on a global scale. The p53-binding motif was
identified in 86% of the shared binding sites and in 76%
of the binding sites for p53 only. It remains to be elucidated
which other parameters of a p53-binding site determine
whether it can be bound by p53 only or also by the family
members. It has been shown in vitro that five specific bases
in the p53 consensus sequence are important for stable
binding of p73 to DNA (72). These specific nucleotides are
present in 9.6% of the motifs found by p53scan in the
shared binding sites, and in 10.8% of the motifs in p53-only
binding sites. Therefore, according to our observations this
specific characteristic of the p53 consensus motif cannot
explain the difference between p53 only and shared binding
site of our genome-wide in vivo binding data.
Besides differences in the p53 motif, we also analyzed

the p53 only versus the shared binding sites in respect to
their genomic location, GO annotation, and the potential
presence of other known transcription factor binding sites,
as described above, but could not observe significant
differences (data not shown). Thus, we found that the
DNA binding characteristics of the p53-binding sites
which were bound by its family members closely resemble
those that were bound by p53 only.

DISCUSSION

Genome-wide identification of p53-binding sites

To characterize the transcriptional mechanisms of the
p53-mediated stress response, we analyzed p53 binding to

chromatin on a genome-wide scale using the ChIP-on-chip
approach and identified 1546 high-confidence binding sites.

While these binding sites were significantly enriched in
TSS flanking regions, encompassing possible promoters,
a large fraction was located in intragenic or intergenic
regions, as also observed in other studies (37,41). We and
others have provided evidence for functionality of these
intergenic binding sites. In our reporter assays, we could
show that the intergenic and intragenic p53-binding sites
can function as enhancers. Likely, the interaction between
enhancer and target gene is mediated via loop formation,
as shown for example for the Hoxd gene cluster and the
b-globin locus (73). Furthermore, the intergenic-binding
sites could be involved in regulation of nonprotein coding
genes as well as other novel transcripts, as has been
suggested by smaller scale ChIP-on-chip analyses (35).
In our study, we discovered that unannotated transcripts
located near intergenic p53-binding sites can be upregu-
lated upon p53 activation.

Table 3. Enriched TRANSFAC motifs involved in a biological

function

TRANSFAC GO term GO description P-value

MZF1 GO:0007275 Multicellular

organismal development

0.03

bHLH GO:0007275 Multicellular organismal

development

0.04

bHLH GO:0019219 Regulation of nucleobase, nucleoside,

nucleotide and nucleic acid

metabolic process

0.04

CP2 GO:0007267 Cell–cell signaling 0.04
AP1 GO:0007275 Multicellular organismal

development

0.05
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Figure 7. p63 and p73 binding to p53 targets. (A) Overlap of p53-
binding sites also bound by p63 and p73 in Saos2 inducible cell lines as
determined by ChIP-on-chip on the dedicated p53 array. (B) p53 motif
identified with p53scan, visualized using WebLogo for p53-binding sites
also bound by p63 or p73 (upper panel) and binding sites only bound
by p53 (lower panel).

3650 Nucleic Acids Research, 2008, Vol. 36, No. 11



Motifs in the p53-binding site

We have developed a new algorithm, p53scan, which
incorporates the motif derived de novo from the genome-
wide binding sites identified in this study as shown in
Figure 4A. Although this motif resembles the different
versions of the p53-binding motif described up to now, it
more accurately reflects the in vivo binding preference of
p53, as this new motif is based on information from
hundreds of binding sites. Indeed, comparisons of p53scan
to other publicly available algorithms, including p53MH,
which has been most widely used, show that it produces
markedly better results in the metrics that were tested in
this study. In addition, we compared p53scan to the algo-
rithm developed by Wei et al. (37), called p53PET model,
with the sequences identified in their study as input. We
found more sequences containing a motif with p53scan
than with p53PET model (82% versus 72%) at the same
specificity level. This confirms that the sensitivity of
p53scan is not limited to the binding sites of our ChIP-
on-chip dataset, but that it can also be used for future
analysis of other binding data. As a publicly accessible,
intuitive and above all sensitive and specific algorithm,
p53scan is a useful addition to the available tools that will
help characterize the widely diverse binding preference
of p53.

When analyzing our p53-binding sites with p53scan,
83% of the identified binding sites contained a motif that
is reminiscent of the p53-binding motif. The predominant
motif has no spacer in between the two half-sites, although
there is a small fraction with a spacer of one nucleotide.
This is in agreement with the genome-wide spacer
distribution found previously (37). In the most highly
enriched group of target sites, nearly all bound sequences
contain our p53-consensus motif. This suggests that
almost all highly enriched p53-binding sites are bound in
a direct sequence-specific manner dependent on the
consensus motif. Of all the identified binding sites, in
17% p53scan cannot detect the p53 consensus motif.
Although previous studies have also found p53-binding
sites without a detectable p53-consensus motif (36,37), we
find less of those binding sites in our study using the more
inclusive identification of the motif by p53scan. The fact
that no p53 motif can be identified in a small subset of
binding sites can have several reasons: either p53 is also
able to bind purely on the basis of DNA topology
independent of the sequence (11), or it might bind to a
different motif like microsatellites for the PIG3 target gene
(9). The remaining sites without a common motif could of
course also be bound due to indirect binding of p53 to
chromatin.

By grouping the binding sites according to their ChIP/
Total ratio, we found a positive correlation with both the
percentage of binding sites containing a p53-binding
motif, as well as the degree of similarity of the identified
motifs with the p53 consensus motif. Thus, the more the
binding sequence resembled the p53 consensus motif,
the higher the ChIP/Total ratio. This is in accordance with
the structural data of DNA-bound p53 that showed that
protein–DNA interfaces vary as a function of the specific
base sequence of the DNA (74). From this structural data,

it was also concluded that the differential binding affinity
is correlated with sequence-specific variations, which have
a direct influence on the protein-DNA contact geometry.
The binding of p53 to DNA occurs in the context of

other transcription factors and cofactors. It has been
shown for individual target genes that other transcrip-
tional activators or repressors can act together with p53
and can have differential effects on the transcription of
target genes. Therefore, we analyzed common cis-elements
among the genome-wide set of p53-binding sites. We find
potential SP1-binding sequences to be highly enriched in
the vicinity of p53-binding sites in our global approach;
p53 has been reported to require the cooperation of Sp1 or
a Sp1-like factor for transcriptional activation of the
human BAX and p21 promoter (69,75). For bHLH
motifs, which we found to be enriched in our set of
target sites, it is known that the p53 promoter itself
contains a functional consensus sequence for bHLH
proteins. In the murine p53 promoter, this element has
been shown to be required for full promoter activity (20).
The fact that we find bHLH motifs enriched in the vicinity
of p53-binding sites, shows that these factors might be
involved in a positive feedforward regulation of p53
pathways. Thus, our findings extend the analysis of the
transcriptional environment of single targets to a larger
subset of target genes derived from a global screen. In the
future, we will need to elucidate what biological con-
sequences might result from certain combinatorial inter-
play between p53 and other cobinding factors. Therefore,
an interesting challenge will lie in the elucidation of which
transcription factor complexes can be found at which p53-
target genes and whether certain biological responses
appear to be dependent on the macro-molecular tran-
scription factor complexes at p53-binding sites. A first
interesting approach to purify macromolecular complexes
at different subsets of p53-target genes was done by
Tanaka et al. (22) by fractionating cross-linked p53-
associated chromatin and identifying the human cellular
apoptosis susceptibility protein (hCAS/CSE1L) in the one
fraction of a subset of p53 target promoters, including
PIG3, in a p53-autonomous manner. Thus, it remains to
be seen whether also for other cellular response pathways
specific combinations of cobinding factors can be isolated
at p53-target genes.

Global binding of p73 and p63 to p53-binding sites

For the first time, we investigated on a global scale to
which extent p53-binding sites can be occupied by p73 and
p63 upon a specific stress signal in vivo. We found that
72% of the p53-binding sites can also be bound by p73
and/or p63. Some groups have postulated differences in
binding motif for the p53 family members, but this is
mostly based on individual targets or in vitro derived data.
Lokshin et al. (72) showed the importance of five bases in
the p53 consensus sequence for stable binding of in vitro
p73 to DNA. In our global binding site set, we cannot
differentiate between the sets of shared and p53-only
binding sites on the basis of this sequence difference. The
fraction of motifs containing these five bases was
comparable in both sets. We could also not identify a
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significant difference between the motif for p53 in shared
binding sides or sites exclusively bound by p53. The fact
that we did not find specific motif variation, is in
agreement with the genome-wide screen for p63-binding
sites by Yang et al. (62) and in vitro studies from Perez
et al. (76), which showed with a SELEX approach that
p63 binds principally to the p53-consensus motif, prefer-
entially to a slightly more degenerate form of it. Therefore,
we conclude that p63 and p73 can bind to p53-binding
sites on a large scale, which may imply that the stress
response is mediated in part by either competitive or
cooperative binding of p53 family members to target
genes. Alternatively, this could hint at the possibility that
p63 and p73 are capable of taking over part of the
function of p53 if needed.
This study provides a global set of high-confidence

p53-binding sites, which greatly expands the known,
experimentally validated p53 binding repertoire and
gives a global insight into their characteristics. These
data can serve as a valuable knowledgebase for further
research, in which new functional studies will help to
further clarify the complex role of p53 and its family
members.
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