UNIVERSITA' DEGLI STUDI di FERRARA - Dep. of

St. RADBOUD UNIVERSITY (NIJMEGEN) - Dep. of Orthodontics and Craniofacial Biology (Prof. C. Carels) - Dep. of Human Genetics (Dr. J.H. Zhou)

Exome sequence analysis of an oral cleft family: from variant validation to top candidate gene selection.

Laureanda: Conte Federica

Relatore: Prof. Michele Rubini

Correlatore: Dr. Elia Bonomo Roversi

Dutch collaborators: Prof. Carine Carels, Dr. Jo H. Zhou, Dr. Kriti D. Khandelwal.

NONSYNDROMIC CLEFT LIP AND PALATE (NSCLP)

- A *congenital disorder*, or *birth defect*, is a condition existing at birth and developed before parturition, during intrauterine life. Particularly, neural tube defects (such as *cleft* and *spina bifida*) arise in the first three months of embryonic development.
- *Cleft lip and palate* (CLP) is a clefting of the upper lip which continues in a clefting of the alveolar ridge and palate. The term *"nonsyndromic"* means that only this defect is present in a patient, without other malformations in different anatomical regions. The nonsyndromic forms are complex traits involving genetic heterogeneity, low penetrance and the influence of genetic and environmental factors.

	Incomplete	Complete
Unilateral	v	d
Bilateral	9	h

studies of human diseases have evolved <u>from low-resolution</u> cytogenetic techniques and candidate gene-based molecular analyses <u>to a single nucleotide</u> <u>resolution techniques</u>, such as genome-wide arrays and *next generation sequencing* (whole-genome and **whole exome sequencing**) (Khandelwal K.D. et al., 2013).

In the past 20 years, genetic

Source: Dixon M.J. et al., 2011

FROM EXOME SEQUENCING TO SANGER SEQUENCING

Human complex traits can be caused by gene mutations: most of these mutations are found in the protein-coding area of genes, also known as the **exons**.

The specific method used for analyzing the exons is called **exome sequencing** (*NGS*). However its results need to be validated with other methods, such as **Sanger sequencing**.

I./R. FAMILY PEDIGREE

Bilateral CLP Male Unilateral CLP (Right) Female Unilateral CLP (Left) Sex unknown Exome-sequenced Deceased 21 17 18 5 2 12 9 6 8 19 7 member **H** member member member A3-B A1-UR (healthy) A2-B member 10 11 20 13 14 A4-UL

Member A1-UR (n. 1): affected by *unilateral CLP* Exome-sequenced

Member A2-B (n. 6): affected by *bilateral CLP* Exome-sequenced

Member A3-B (n. 8): affected by *bilateral CLP* Exome-sequenced

Member A4-UL (n. 14): affected by *unilateral CLP* <u>Not</u> exome-sequenced

Member H (n. 7): not affected (*healthy*) Not exome-sequenced

PROJECT OVERVIEW

RAW RESULTS: from 25,000 to 31 variants

~25,000 variants were identified using *exome sequencing* (Illumina/Solexa platform)

~200 variants were filtered using *Microsoft Excel*

- number of reading
- delete all intronic varinats
- delete all non-overlapping variants
- delete homozygous variants

31 variants were prioritized by *Endeavour*[®] (based on more than twenty sources)

...and these 31 variants were further checked with Sanger Sequencing.

SANGER SEQUENCING VALIDATION

		PCR e primers				Sanger seq. resu	ılts					
Locus (according to GeneCards - EntrazGene)	Band size	Annealing temp. used	Exome Seq. result	member 61808 AFFECTED	member 61810 AFFECTED	member 61812 AFFECTED	member B.I. (100 exome seq.) AFFECTED	member MONICA (no exome seq.) NOT- AFFECTED	Type of v	variant		
10q24.2	428 bp	60.0 °C	G > A	G > A	G > A	G > A	G	G	missense	G>D		
5q11.2	403 bp	60.0 °C	G > C	G > C	G > C	G > C	G	G	missense	C>S		
16p12.2	498 bp	60.0 °C	T > G	T > G	T > G	T > G	т	т	missense	F>C		
20q13.2	38											
2q31.1	48		all tho 3	R1 vari	ants w	iere va	alidato	d (con	firme	۲v		missense V>I
12q13.13	44	(indate			.uj	-	missense L>V
2q31.2	45			by usir	ng San	ger se	auena	ing.			-	missense Y>S
18q12.2	49				10 0 a 11	001.00	946116				-	missense V>I
14q11.2	460 bp											missense A>G
2q35	413 bp	1p32.	3 53	80 bp 60	0.0 °C	C>T	С>С/Т	C > C/T	C > C/T	C > C/	/т с	missense R>W
16q12.2	477 bp	18q12	. 1 47	75 bp 60	0.0 °C	G > A	G > G/A	G > G/A	G>G/A	G > G/	/a G	missense V>I
1p36.13	444 bp	11q21-	-22 47	76 bp 60	0.0 °C	C > A	C > C/A	C > C/A	C > C/A	C > C/	A C	missense L>I
1q42.3	575 bp	4q22.	1 45	52 bp 60	0.0 °C	C > T	с>с/т	C > C/T	C > C/T	C > C/	/T C>C/T	missense T>M
3q26.31	372 bp	21q22	.3 52	20 bp 60	0.0 °C	G > T	G > G/T	G > G/T	G > G/T	G	G	missense G>V
17q24.3	364 bp	16p12	.2 40	04 bp 60	0.0 °C	C > A	C > C/A	C > C/A	C > C/A	С	С	missense P>T
9p24.3	463 bp	6q22.2	2-3 45	52 bp 60	0.0 °C	G > A	G > G/A	G>G/A	G > G/A	G > G/	/A G>G//	A missense H>Y
L		19p13	.3 48	37 bp 60	0.0 °C	T > C	T > C/T	T > C/T	T > C/T	T > C/	/T T>C/1	missense F>L
		15q1	4 44	15 bp 60	0.0 °C	T > A	T > T/A	T > T/A	T > T/A	Т	T > T/4	missense M>L
		<mark>6q25</mark> .	1 49	95 bp 60	0.0 °C	G > A	G > G/A	G > G/A	G>G/A	G	G	missense R>W

First selection: SEGRAGATION PATTERN

The first selection was based on the **segregation pattern**.

Four possible patterns:

	e	xome-sequence	not exome	e-sequenced		
Gene name	member A1-UR <u>affected</u>	member A2-B <u>affected</u>	member A3-B <u>affected</u>	member A4-UL <u>affected</u>	member H healthy	
Gene A	A > G	A > G	A > G	A > G	A > G	X
Gene B	G > T	G > T	G > T	G	G	X
Gene C	G > T	G > T	G > T	G	G > T	X
Gene D	C > T	C > T	C > T	C > T	С	~

We chose the variants which were present <u>ONLY</u> in the <u>four</u> <u>affected members</u> and <u>absent in the non-affected one</u>.

First selection: THE SIX TOP CANDIDATE GENES

After the first selection (based on the segregation pattern), **6 genes** were selected:

	Ехс	ome-sequen	Non-sequenced		
Gene locus	Member A1-UR	Member A2-B	Member A3-B	Member A4-UL	Member H
1p32.3	C > T	C > T	C > T	C > T	С
1p36.13	G > A	G > A	G > A	G > A	G
3q26.31	A > G	A > G	A > G	A > G	А
11q21-22	C > A	C > A	C > A	C > A	С
12q24.31	C > G	C > G	C > G	C > G	С
18q12.1	G > A	G > A	G > A	G > A	G

First selection: ONE-POINT LOD SCORE

Additionally, for each variant we also calculated the **one-point LOD score** to assess the likelihood of linkage between the variant and cleft phenotype.

The formula of one-point LOD score (considering the *phase uncertainty*) is edited as follows:

$$\log_{10} \left[\left(\frac{1}{2} \cdot \frac{(1-d)^{P} \cdot d^{R}}{0.5^{(P+R)}} \right) + \left(\frac{1}{2} \cdot \frac{(1-d)^{R} \cdot d^{P}}{0.5^{(P-R)}} \right) \right]$$

- d : Recombinant distance (d = 0)
- *P* : *Parental frequency*
- *R* : *Recombinant frequency*

First selection: ONE-POINT LOD SCORE

Four types of variant segregation pattern were present in *I./R. family*, so the genes were divided into four groups. The variants in the same group showed the same LOD score.

Loci	Description	Parental	Recombinant	LOD
1p32.3 1p36.13 3q26.31 11q21-22 12q24.31 18q12.1	Present in 4 affected members. Absent in healthy member.	5	0	1,204098
1q42.3 2q35 4q22.1 6q22.2-3 6q25.1 12q13.13 19p13.3	Present in 4 affected members. <u>Present in healthy member</u> .	4	1 (member H)	-3,7959
3p22.2 3q21.3 5q11.2 10q24.2 21q22.3 17q24.3 18q12.2 16p12.2 (I) 16p12.2 (II)	Present in 3 affected members. Absent in healthy member. <u>Absent in 1 affected member.</u>	4	1 (member A4-UL)	-3,7959
2q31.1 2q31.2 7q32.1 9p24.3 13q12.11 14q11.2 15q14 16q12.2 20q13.2	Present in 3 affected members. <u>Present in healthy member</u> . <u>Absent in 1 affected member</u> .	3	2 (members H and A4-UL)	-8,79589

The further selection was based on *different parameters*:

- 1) severity of amino acid substitution;
- 2) gene and protein characteristics;
- 3) presence of the selected variants in EVS database;
- 4) presence of recorded patients with chromosomal alterations involving these genes, who show pathological phenotypes;
- 5) gene expression levels in mouse palate tissue;
- 6) availability of KO mouse models.

The further selection was based on *different parameters*:

1) severity of amino acid substitution;

- 2) gene and protein characteristics;
- 3) presence of the selected variants in EVS database;
- 4) presence of recorded patients with chromosomal alterations involving these genes, who show pathological phenotypes;
- 5) gene expression levels in mouse palate tissue;
- 6) availability of KO mouse models.

Second selection: SEVERITY OF AMINO ACID SUBSTITUTION

Using **PolyPhen-2**[®], we checked the effect of amino acid substitutions due to these variants in the corresponding proteins.

Gene locus	PolyPhen-2 [®] (HumDiv)						
Gene locus	Severity prediction	Score	Sensitivity	Specificity			
1p32.3	Probably damaging	1.000	0.00	1.00			
1p36.13	Probably damaging	1.000	0.00	1.00			
3q26.31	Probably damaging	0.997	0.41	0.98			
11q21-22	Probably damaging	0.995	0.68	0.97			
12q24.31	Benign	0.004	0.97	0.59			
18q12.1	Possibly damaging	0.799	0.84	0.93			

The further selection was based on *different parameters*:

- 1) severity of amino acid substitution;
- 2) gene and protein characteristics;
- 3) presence of the selected variants in EVS database;
- 4) presence of recorded patients with chromosomal alterations involving these genes, who show pathological phenotypes;
- 5) gene expression levels in mouse palate tissue;
- 6) availability of KO mouse models.

Second selection: GENE/PROTEIN CHARACTERISTICS

We searched for details regarding each gene and its corresponding protein, by using *GeneCards*[®] and *UniProt*[®] databases.

Gene locus	Protein size	Domain containing aa substitution	Protein name and function	Disease related to gene defects (link from OMIM®)
1p32.3	74 kDa	CoA-binding domain	Inner mitochondrial protein; involved in the palmitoyl-CoA shuttle system (LCFA) and in the metabolism of lipid and lipoproteins (fatty acids oxidation and PPAR-α pathway).	CPT deficiency late-onset / lethal neonatal; hepato-cardio muscular manifestations; encephalopathy acute infection-induced type 4
1p36.13	18 kDa	unknown function	Uncharacterized protein in human	No clinical evidences
3q26.31	133 kDa	unknown function	Single-pass membrane protein (cytosol); matrix-cell adhesion; cell differentiation in embryonic development; involved in wound healing; regulator of adipogenesis.	Cancer; fibrosis; altered embryonic development
11q21-22	493 kDa	Stem domain	Motor for the intraflagellar retrograde transport; component of cilium; intracellular transport RE-Golgi.	Asphyxiating thoracic dystrophy type 3; short rib-polydactyly syndrome type 3/2B
12q24.31	28 kDa	unknown function	Interaction with p63 in the cellular cycle regulation (related to tumorigenesis).	Tumorigenesis (cervical/breast cancer); leukemia; lymphoma; cervicitis; leptospirosis
18q12.1	122 kDa	5 th structural repeat	Single-pass membrane protein; component of intercellular desmosomes; role in the apoptosis and in the degradation of cell adhesion proteins.	Familial arrhythmogenic right ventricular dysplasia type 10; susceptibility to cardiomyopathy dilated type 1BB; signet ring cell adenocarcinoma; renal clear cell carcinoma; keratosis; keratoacanthoma: squamous cell carcinoma; arachnoiditis

The further selection was based on *different parameters*:

- 1) severity of amino acid substitution;
- 2) gene and protein characteristics;

3) presence of the selected variants in EVS database;

- 4) presence of recorded patients with chromosomal alterations involving these genes, who show pathological phenotypes;
- 5) gene expression levels in mouse palate tissue;
- 6) availability of KO mouse models.

Second selection: PRESENCE IN EVS

Afterwards, we used **EVS**[®] (*Exome Variant Server*) database in order to verify if the variants, identified by exome sequencing, had ever been seen before.

Gene locus	Presence in EVS [®]	Clinical link
1p32.3	no	
1p36.13	yes	Unknown
3q26.31	no	
11q21-22	yes	Unknown
12q24.31	no	
18q12.1	yes	Unknown

The further selection was based on *different parameters*:

- 1) severity of amino acid substitution;
- 2) gene and protein characteristics;
- 3) presence of the selected variants in EVS database;
- 4) presence of recorded patients with chromosomal alterations involving these genes, who show pathological phenotypes;
- 5) gene expression levels in mouse palate tissue;
- 6) availability of KO mouse models.

Furthermore, we checked the presence of patients (recorded in *Decipher*[®]) with chromosomal alterations involving these genes, who show pathological phenotypes, such as: *cleft lip, cleft palate, cleft lip and palate,* other craniofacial malformations.

Gene locus	Patient ID num.	Type of alteration	Dimension	Location	Pathologic phenotypes (cranio-facial malformations)
3q26.31	2757	Deletion (7 genes)	1.26 Mb	chr3:171214816-172472424	Ptosis, Abnormality of the outerear
1-22.2	253629	Duplication (105 genes)	16.02 Mb	chr1:46713932-62729246	Thick lower lip vermilion, Thick upper lip vermilion, Prominent ears
1932.3	272313	Deletion (57 genes)	7.30 Mb	chr1:47090879-54388982	Hypoplasia of the maxilla, Exaggerated cupid's bow, Microcephaly, Prominent glabella
1=26.12	<u>2483</u>	Deletion (149 genes)	12.57 Mb	chr1:4795388-17364849	Submucous cleft hard palate, Thin upper lip vermilion, Thick lower lip vermilion, Downturned corners of mouth, Midface retrusion, Prominent ears
1030.13	254939	Deletion (83 genes)	5.82 Mb	chr1:15325975-21141171	High palate, epicanthus, hypoplasti nasal alae, Microcephaly
	259769	Duplication (318 genes)	24.41 Mb	chr1:712577-25120526	Depressed nasal bridge
	767	Duplication (51 genes) - related to the first mutation	11.48 Mb / 5.47 Mb / 20.42 Mb	chr11:9410383131-105588056 chr11:107792125-113258885 chr11:114235228-134651277	Bifid uvula, Abnormality of the labia, Preauricular pit, Hydrocephalus
	248786	Duplication (246 genes)	27.11 Mb	chr11:100747981-127862005	High palate, Encephalocele, Frontal bossing, Trigonocephaly, Brechycephaly, Prominent nose
11q21-22	249758	Duplication (68 genes)	14.49 Mb	chr11:92254068-106746797	Thick upper lip vermilion, Thick lower lip vermilion, Short philtrum, Wide nasal bridge, Bifid nasal bridge, Brechycephaly, Microcephaly, Synophrys, Blepharophimosis
	251725	Deletion (84 genes)	18.74 Mb	chr11:84405018-103141743	Midface retrusion
	262828	Deletion (66 genes)	13.90 Mb	chr11:92765018-106662479	Abnormality of the face (not specifie d)
	<u>1581</u>	Duplication (177 genes) - related to the first mutation	55.90 Mb / 14.87 Mb	chr18:21936109-77839271 chr18:140336-15008636	<u>Cleft palate</u> , <u>Non-midline cleft lip</u> , Long face, Blepharophimosis
18q12.1	260121	Deletion (46 genes)	13.40 Mb	chr18:22032122-35430900	Abnormality of the face (not specified)
	266270	Duplication (263 genes)	77.92 Mb	chr18:83701-78001525	Micrognathia, Depressed nasal bridge
12q24.31	263700	Deletion (43 genes)	9.03 Mb	chr12:124743122-133773534	Abnormality of the face (not specified), Hydrocephalus

The further selection was based on *different parameters*:

- 1) severity of amino acid substitution;
- 2) gene and protein characteristics;
- 3) presence of the selected variants in EVS database;
- 4) presence of recorded patients with chromosomal alterations involving these genes, who show pathological phenotypes;
- 5) gene expression levels in mouse palate tissue;
- 6) availability of KO mouse models.

Moreover, we evaluated also the expression levels of these genes in the embryonic mouse palate (mesenchymal tissue).

The genic expression of each gene in this tissue was evaluated using the *RNA-seq data* generated by an external collaborator, *Dr. M.J. Dixon*, and his group (*Academic Health Sciences Centre, University of Manchester*).

Gene locus	Expression level in mouse palate
1p32.3	Low
1p36.13	(not expressed)
3q26.31	Very high
11q21-22	High
12q24.31	Very high
18q12.1	Medium

The further selection was based on *different parameters*:

- 1) severity of amino acid substitution;
- 2) gene and protein characteristics;
- 3) presence of the selected variants in EVS database;
- 4) presence of recorded patients with chromosomal alterations involving these genes, who show pathological phenotypes (cleft lip, palate, lip and palate or other cranio-facial malformations);
- 5) gene expression levels in mouse palate tissue;
- 6) availability of KO mouse models.

Second selection: KO MOUSE STRAINS

Finally, we checked the gene inactivation effect on the phenotype, analyzing the data of knockout mouse models available online (on **MGI**[®] and **IMSR**[®]), which would be also useful to plan further functional analyses *in vivo*.

Gene locus	Strains available	Description	Phenotypic summary	
1p32.3	no			
1p36.13	no			
3q26.31		1 st strain: targeted (KO); intragenic deletion	Lethal for homozygous mutants (-/-); increased level of IgG2a in serum	
	2 strains available	2 nd strain: targeted (KO); intragenic deletion	Lethal for homozygous mutants (-/-); abnormal cell differentiation/adhesion; decreased fibroblast migration and proliferation; abnormal bone ossification	
		1 st strain: targeted (KO); insertion	Lethal for homozygous mutants (-/-); abnormal cell proliferation; increased apoptosis; loss of Shh-dependent signaling in the neural tube (no other information available)	
11q21-22	2 strains available	2 st strain: targeted (KO); chemically induced mutation	Pulmonary atresia with ventricular septal defect; atrioventricular septal defect; major aortopulmonary collateral arteries; micrognathia; hypotelorism; duplex kidney and agenesis; polydactyly; syndactyly; oligodactyly; tracheoesphageal fistula; eye malformation; mouth malformation	
12q24.31		3 strains record	der (the details are reserved)	
18q12.1	1 strains available	Targeted (KO); disruption by insertion of vector	Homozygous (-/-) embryos die around implantation; abnormal cell death; decreased fibroblast proliferation	

THE THREE **BEST** CANDIDATE GENES

Comparing all these data, we have chosen three top candidate genes which should be analyzed further: these genes are located at **1p32.3**, **3q26.31** and **12q24.31**.

Gene locus	Type of amino acids change	Protein dimension	Position of aa mutation in the protein structure	Protein function	Expression in mouse palate	KO mouse models available	Patients with alterations involving the gene (Decipher®)	Presence of the variant in EVS [®] database	Selected
lp32.3	R > W (Probably damaging)	74 kDa	CoA-binding domain	Innermitochondrial protein; involved in the palmitoyl-CoA shuttle system and in the metabolism of lipid and lipoproteins.	Low	NO	2	No	Yes
1p36.13	D > N (Probably damaging)	169 KDa	Portion without particular function	Uncharacterized protein in human	Not expressed	NO	3 (one presents cleft of palate)	Yes	No
<mark>3q26.31</mark>	Y > C (Probably damaging)	133 kDa	Portion without particular function	Single-pass membrane protein (cytosol); regulator of adipogenesis.	Very high	2 KO strains	1	No	Yes
11q21-22	L > I (Probably damaging)	493 kDa)	Stem domain	Motor for the intraflagellar retrograde transport, component of cilium, intracellular transport RE-Golgi.	High	2 KO strains	5 (one presents bifid uvula)	Yes	No
12q24.31	L > V (Benign)	28 kDa)	Portion without particular function	Interaction with p63 in the cellular cycle regulation (related to tumorigenesis).	Very High	3 KO strains (no data available)	1	No	Yes
18q12.1	V > I (Possibly damaging)	122 kDa)	5 th structural repeat	Single-pass membrane protein; component of intercellular desmosomes; role in the apoptosis and in the degradation of cell adhesion proteins.	Medium	1 KO strain	3 (one presents cleft of lip and palate)	Yes	No

CONCLUSION

In conclusion, comparing all the data found during the second selection phase, for *I./R. family* three genes have been selected.

These genes are located at: • 1p32.3

- 3q26.31
- 12q24.31

In all probability, the most interesting gene could be the one whose locus is **3q26.31**. It encodes for a structural protein involved in the cell-matrix adhesion and in cell differentiation, particularly during embryonic development. Interestingly, defects in this gene are associated with anomalies in embryogenesis and morphogenesis, both in human and in mouse.

Anyway, we are not yet able to conclude if one of these genes is a causative gene for NSCLP...

FUTURE PERSPECTIVES

The next step will be to improve the statistical power of this family by analyzing other members (such as **member n. 5**) and/or checking the presence of these candidate variants also in other Australian families, which show high recurrence of NSCLP.

So, if the variants will be identify also in other families, the different LOD scores (regarding the same variant) will be added together: in the end, if the resulting value reaches the significance cut-off value (3), we will be able to confirm the association between the variant and the phenotype.

In this case, further analyses will be performed (e.g. functional analyses), both *in vitro* and *in vivo* models, in order to investigate the role of this potential causative variant in the nonsyndromic cleft lip and palate development.