These samples were run by seq2science v0.5.4, a tool for easy preprocessing of NGS data.
Take a look at our docs for info about how to use this report to the fullest.
- Workflow
- scrna-seq
- Date
- August 13, 2021
- Project
- Klaas_kalisto
- Contact E-mail
- jsmits@science.ru.nl
Report generated on 2021-08-13, 18:01 based on data in:
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/qc/samplesconfig_mqc.html
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/qc/trimming/LW35_merged_R1_001.fastp.json
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/kallistobus/mm10_mcherry_ERCC_reporter-LW52-Friedl-plate2-CTCs_Z45_S2/inspect.json
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/qc/trimming/LW52-Friedl-plate2-CTCs_Z45_S2_R1_001.fastp.json
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/qc/trimming/LW52-Friedl-plate1CTCs_Z44_S1_R1_001.fastp.json
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/kallistobus/mm10_mcherry_ERCC_reporter-LW35_merged/inspect.json
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/log/workflow_explanation_mqc.html
/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/Klaas_kalisto/results/kallistobus/mm10_mcherry_ERCC_reporter-LW52-Friedl-plate1CTCs_Z44_S1/inspect.json
Change sample names:
General Statistics
Showing 3/3 rows and 7/12 columns.Sample Name | % Duplication | GC content | % PF | % Adapter | M Bus Records | M Distinct UMIs | % Whitelisted reads |
---|---|---|---|---|---|---|---|
LW35_merged | 76.2% | 42.5% | 99.1% | 7.64 | 0.07 | 81.7% | |
LW52-Friedl-plate1CTCs_Z44_S1 | 61.1% | 53.5% | 98.3% | 3.24 | 0.07 | 73.1% | |
LW52-Friedl-plate2-CTCs_Z45_S2 | 69.6% | 55.2% | 97.9% | 0.8% | 1.21 | 0.07 | 65.9% |
Workflow explanation
fastp
fastp An ultra-fast all-in-one FASTQ preprocessor (QC, adapters, trimming, filtering, splitting...)
Filtered Reads
Filtering statistics of sampled reads.
Duplication Rates
Duplication rates of sampled reads.
Sequence Quality
Average sequencing quality over each base of all reads.
GC Content
Average GC content over each base of all reads.
N content
Average N content over each base of all reads.
Bustools
Bustools works with BUS files - a file format for single-cell RNA-seq data designed to facilitate the development of modular workflows for data processing.
Summary table
This is a table of the complete output of bustools inspect. Note that some columns are hidden by default (click Configure Columns to show).
Sample Name | M Bus Records | M Reads | Barcodes | Mean reads per barcode | M Distinct UMIs | M Distinct barcode-UMI | Mean UMIs per barcode | M 2xdepth records | % Whitelisted barcodes | % Whitelisted reads |
---|---|---|---|---|---|---|---|---|---|---|
LW35_merged | 7.64 | 159.20 | 62157 | 2561.24 | 0.07 | 4.40 | 70.74 | 4.34 | 0.6% | 81.7% |
LW52-Friedl-plate1CTCs_Z44_S1 | 3.24 | 18.83 | 55727 | 337.82 | 0.07 | 2.30 | 41.27 | 1.30 | 0.7% | 73.1% |
LW52-Friedl-plate2-CTCs_Z45_S2 | 1.21 | 7.09 | 45712 | 155.15 | 0.07 | 0.93 | 20.30 | 0.49 | 0.8% | 65.9% |
Mean number of UMIs per barcode
Average number of UMIs (unique molecular identifiers) per barcode
Each unique barcode represents a cell and each Unique Molecular Identifier (UMI) represents a unique transcript molecule. By counting the mean number of UMIs per barcode, you effectively calculate the average number of unique transcripts per cell.
Percentage in whitelist
The whitelist is a list of unique barcodes used in your protocol, either provided or inferred from the data.
Each unique barcode from the whitelist represents a cell. The percentage of reads with barcode / barcodes in the whitelist is a measure of percentage of reads that could be asigned to a cell.
Samples & Config
sample | assembly | descriptive_name |
---|---|---|
LW52-Friedl-plate1CTCs_Z44_S1 | mm10 | LW52_plate1 |
LW52-Friedl-plate2-CTCs_Z45_S2 | mm10 | LW52_plate2 |
LW35_merged | mm10 | LW35_merged |
# tab-separated file of the samples
samples: samples.tsv
# pipeline file locations
result_dir: ./results # where to store results
genome_dir: /ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/genomepy_genomes/ # where to look for or download the genomes
fastq_dir: ./fastq # where to look for fastqs
# contact info for multiqc report and trackhub
email: jsmits@science.ru.nl
fqext1: R1_001
fqext2: R2_001
# how to handle replicates
technical_replicates: merge
# scRNA options
# seq2science does currently not support scrna-seq platforms that generate more than two fastq files, such as 10xv1.
quantifier:
kallistobus:
## Velocity example ##
#ref: '--workflow lamanno'
#count: '-x 1,8,16:1,0,8:0,0,0 --verbose --workflow lamanno --loom'
## Quantification example ##
#count: '-x 0,8,16:0,0,8:1,0,0 --h5ad --verbose'
#count: '-x 10XV3 --h5ad --verbose'
## Velocity example ##
#ref: '--workflow lamanno'
#count: '-x 0,8,16:0,0,8:1,0,0 --h5ad --verbose --workflow lamanno'
#count: '-x 10XV3 --verbose --h5ad --workflow lamanno'
ref: '--workflow lamanno'
#count: '-x 0,8,16:0,0,8:1,0,0 --h5ad --verbose --workflow lamanno'
count: '-x 1,8,16:1,0,8:0,0,0 --verbose --workflow lamanno --loom'
custom_annotation_extension: /ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/sabine_Friedl/mcherry.gtf
custom_genome_extension: /ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/sabine_Friedl/ERCC_mCherry.fastq
custom_assembly_suffix: "_mcherry_ERCC_reporter"
barcodefile: "/ceph/rimlsfnwi/data/moldevbio/zhou/jsmits/scRNAseq/1col_barcode_384.tab"