Differential gene expression analysis

04-10-2022 Dr. Janou Roubroeks

What is differential gene expression analysis?

Goal:

Find genes that are *significantly* higher or lower epxressed between groups of samples

- Quantify the proportion of change lacksquare
- Assign a p-value to each comparison lacksquare

We use the raw count values as starting point:

	Gene 1	Gene 2
Sample A	4	4
Sample B	4	2

How do we quantify changes?

The difference in gene expression is usually expressed as a **fold change**

A fold change (FC) describes the factor of change between two quantities:

$$FC = \frac{A}{B}$$

FC is typically expressed on a Log2 scale

Symmetrical scale, centered at o (no change)

	Gene 1	Gene 2
Sample A	4	4
Sample B	4	2
FC (A/B)	1	2
Log₂ FC (A/B)	0	1

Gene 2 is **2-fold** upregulated in Sample A compared to sample B

FC(A/B) = FC(B/A)

Note: Watch out for FC **directionality**

Challenge 1: Library size variation

Sequencing depth can vary between samples

- Sample A has double the read depth of Sample B
- The variation we see is technical, not biological

Would it be fair to compare Sample A and B directly?

- No, we must adjust for different library sizes between samples first
- We need to **normalise** our data

Raw counts:

	Gene 1	Gene 2	Total reads
Sample A	20	40	60
Sample B	10	20	30

Example: TPM (transcripts per million) normalisation

TPM (Transcripts per million)

- RPK (reads per kilobase) -> Divide each gene by its size in kb Ι.
- Scaling factor -> Sum up RPK per sample and divide by 10⁶ Π.
- TPM -> RPK / scaling factor (per sample) Ш.

TPM adjusts for gene length and library size.

TPM allows between-sample comparisons of proportional gene expression (total TPM counts are the same in each sample)

- Suitable for exploratory data analysis •
- **Not** suited for DEG analysis •

Raw counts:

	Gene 1	Gene 2	Total reads
Sample A	20	40	60
Sample B	10	20	30

	Gene 1 (10kb)
Sample A	20/10 = 2
Sample B	10/10 = 1

TPM normalisation

Gene 2 (20kb)	Total RPK (scaling factor)	TPM Gene 1	TPM Gene 2
40/20 = 2	4/10	5	5
20/20 = 1	2 / 10	5	5

Challenge 2: Library composition bias

The number of reads in a sequencing run is finite

Example:

Assume a gene is expressed in tissue **A** but not in tissue **B**?

- Sample A and Sample B have the same number of total reads
- Gene 3 is **not** transcribed in Sample B, but highly expressed in sample A
- The 60 **leftover** reads that would have been assigned to Gene 3 in Sample B are distributed to Gene 1 and Gene 2

Gene 1 and Gene 2 appear overexpressed in Sample B

- This called a **composition bias**
- Library size normalisation is not enough
- We need to account for these genes during normalisation

→ TPM **does not** account for composition bias

Real counts:

	Gene 1	Gene 2	Gene 3
Sample A	10	10	40
Sample B	10	10	0

Observed counts:

	Gene 1
Sample A	10
Sample B	10 + 20

Gene 2	Gene 3	Total
10	40	60
10 + 20	0	60

Normalisation for DE analysis

Common normalization methods

Several common normalization methods exist to account for these differences:

os or	Normalization method	Description	Accounted factors	Recommendations for use
ion	CPM (counts per million)	counts scaled by total number of reads	sequencing depth	gene count comparisons between replicates of the same samplegroup; NOT for within sample comparisons or DE analysis
.1011	TPM (transcripts per kilobase million)	counts per length of transcript (kb) per million reads mapped gene length of gene count comp within a sample of between samples same sample gro NOT for DE analy		gene count comparisons within a sample or between samples of the same sample group; NOT for DE analysis
- + -	RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	similar to TPM	sequencing depth and gene length	gene count comparisons between genes within a sample; NOT for between sample comparisons or DE analysis
	DESeq2's median of ratios [1]	counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depth and RNA composition	gene count comparisons between samples and for DE analysis ; NOT for within sample comparisons
	EdgeR's trimmed mean of M values (TMM) [2]	uses a weighted trimmed mean of the log expression ratios between samples	sequencing depth, RNA composition, and gene length	gene count comparisons between and within samples and for DE analysis

To test differential expression we use median of ratio TMM

- Between sample normalisation
- Accounts for sequencing depth & library composit

DE analysis tools incorporate normalisation in their pipeline, like **DESeq2**

- Incorporates information from biological replicate lacksquarecontrol variance
- The more replicates, the better!

Radboud University

To sum it up:

True gene expression \approx *observed gene expression* – *technical noise*

Correct preprocessing is needed to remove noise and enable fair comparisons!

- Between-sample normalisation
- Statistical modeling & hypothesis testing
- Multiple testing correction (e.g. Bonferroni, FDR)

Your data:

• 6 conditions, with each 3 biological replicates (18 samples)

Conditions:	DMSO	TA 100 nM	ΤΑ 1 μΜ	RU 1 μM	RU : + TA
Your samples	3	3	3	3	3
Technical replicates:	3	3	3	3	3

- A Seq2science pipeline has been run that merges the technical replicates for each sample
 - You can find the multiQC report for this run here: <u>https://mbdata.science.ru.nl/ghe_2022/day2/</u>
- We will run DESeq2 on this data to find genes that are differentially expressed between different conditions

How do we run DESeq2?

We make use of an R script (run on the mbscourse server) that takes as input:

- A contrast you want to run (e.g. DMSO vs. TA 100nM)
- A samples file that tells DESeq2 which samples belong to which groups (.tsv)
- Count table (always use raw counts)
- A path to a directory where the results can be stored

DESeq2 output example:

##	log2 fold ch	nange (MLE):	condition trea	ated vs unt	reated	
##	Wald test p-	-value: cond	lition treated v	vs untreate	ed	
##	DataFrame wi	ith 9921 row	s and 6 columns	3		
##		baseMean	log2FoldChange	lfcSE	stat	pval
##		<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeri< td=""></numeri<>
##	FBgn0000008	95.14429	0.00227644	0.223729	0.010175	0.99188
##	FBgn0000014	1.05652	-0.49512039	2.143186	-0.231021	0.81729
##	FBgn0000017	4352.55357	-0.23991894	0.126337	-1.899041	0.05755
##	FBgn0000018	418.61048	-0.10467391	0.148489	-0.704927	0.48085
##	FBgn0000024	6.40620	0.21084779	0.689588	0.305759	0.75978

Statistical testing assumes Log 2Fold Change = 0 (No change in gene expression)

DE genes can be extracted by applying filtering conditions to columns

Use multiple-testing corrected *p*-value for more accuracy (recommended)

How do we run DESeq2?

- Navigate to your group's folder on the server, and create a new folder for DESeq2 1.
- Copy the samples DESeq2.tsv file in /scratch/ghe 2022/analysis/all samples/ to your own folder 2.
- 3. Add a column with the contrast (comparison you want to run)
 - This tells DESeq2 which samples to use in your comparison
- You can then run the DESeq2 script by running 4. /scratch/ghe_2022/scripts/deseq2.R --help
 - Using the --help flag will show you how to correctly pass the input files to your script!
 - The counts file you need is located in: /scratch/ghe_2022/analysis/all_samples/results/counts/ (this folder also contains the TPM files you can use later)
 - Make sure to save your output to your own directory!

sample	Condition1vsCondition3
Condition1_sample1	Condition1
Condition1_sample2	Condition1
Condition1_sample3	Condition1
Condition2_sample1	
Condition2_sample2	
Condition2_sample3	
Condition3_sample1	Condition3
Condition3_sample2	Condition3
Condition3_sample3	Condition3

Radboud University

https://mbdata.science.ru.nl/ghe_2022/day2/

Cyberduck setup:

酱 Cyberduck					
File Edit View	Go Bookmark Window	Help			
Qpen Connection	Quick Connect	→ 🏹 -	Get Info Refresh	Edit Upload	Transfers
v 🛛 🖉	? I I I I I I I I I I I I I I I I I I I				
Filename					

SFTP (SSH File	e Transfer Protocol)		2
Server:	mbscourse.science.ru.nl	Port:	22
URL:	sftp://jroubroeks@mbscourse.science.ru.n	l.	
Username:	jroubroeks		
Password:			
	Anonymous Login		
SSH Private Key:	None	~	Choose
	Save Password		
		Connec	t Cance

